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Isobaric coexistence curves of two liquid phases are predicted from the 
temperature and composition at the consolute point of binary solutions 
consisting of a hydrocarbon and the corresponding perfluorocarbon. Excess 
enthalpies obtained from the free volume theory of Flory as well as from 
calorimetric measurements are used to account for the temperature dependence 
of the Gibb,v energy of mixing. The treatment  is based on the extension of the 
Flory-Hu.qgin.s model to nonathermal polymer solutions. Formal applicability 
to mixtures of molecules not largely differing in size is achieved by introducing 
generalized variables characterizing composition in place of volume fractions. 
Phase diagrams of following systems are predicted and compared with experi- 
mental results : methane + carbontetrafluoride, n-hexane + perfluoro-n-hexa 
he, n-heptane + perfluoro-n-heptane, methyleyclohexane + perfluoromethyl- 
cyclohexane. 

(Kcywords." Binary liquid mixturc~, thermodynamics of; Liquid-liquid pha~c 
equilibria) 

Zur Thermodynamik bcschriinkt mischbarcr flii,~'sigcr Zweistof~'ystcmc 
Isobare Koexistenzkurven zweier t]iissiger Phasen werden aus Temperatur 

und Zusammensetzung am kritischen Entmischungspunkt bins LSsungen 
bestehend aus einem Kohlenwasserstoff und dem entsprechenden Perfluor 
kohlenstoff vorausgesagt. Die Temperaturabhgngigkeit  der Gibbs-Energie der 
Misehung wird mit Hilfe yon Mischungsenthalpien, die sowohl tier Freien 
Volumentheorie von Flory als aueh kalorimetrisehen Messungen entst~mmen, 
berficksichtigt. Als Berechnungsgrundlage dient das auf niehtathermisehe 
PolymerlSsungen erweiterte Flory-Huggin.s'-Modell. Die Einftihrung verallge- 
meinerter Variablen zur Charakterisierung der Zusammensetzung an Stelle yon 
Volumenbr/iehen ermSglicht die formale Anwendbarkeit  auf Misehungen yon 
Molekfi]en mit wenig versehiedener Gr613e. Zustandsdiagramme folgender 
Mischsysteme werden vorausbereehnet und mit experimentellen Ergebnissen 
vergliehen: Methan + Tetrafluorkohlenstoff, n-Hexan + Perfluor-n-Hexan, n- 
Heptan + Perfluor n-Heptan, Methyleyclohexan + Perfluormethyleyclohexan. 
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1. Introduction 

The success of a thermodynamic description of the isobaric coexis- 
tence curve of two liquid phases in a binary system of incompletely 
miscible components is largely dependent on the form of the function 
relating the molar excess Gibbs energy AGE to concentration and 
temperature.  The accuracy of the binodiM curve predicted from a 
certain mixture model is a very sensitive test of its theoretical basis. 

In the simplest possible case, when A G E is represented by a one- 
parameter  expression of Porter type, the resulting phase-boundary 
curve is symmetrical in the mole fractions and the equilibrium tempera- 
ture is explicitly expressible as a function of composition of the 
coexisting phases. In the present concept, the Porter formalism having 
for practical purposes the advantage of simple mathematical  tracta- 
bility, is extended to binodials of unsymmetrical  shape. This is most 
easily accomplished by introducing new variables characterizing the 
composition of the binary system : a parameter taken constant through 
out the whole range of concentration relates these variables to the mole 
fractions. 

Solubility-temperature curves are calculated from the coordinates 
of the critical solution point (CSP) and the molar enthalpies of mixing 
A H E for solutions of the following pairs consisting of a hydrocarbon 
and the corresponding perfluorocarbon : CH4 + CF4, n-C6H14 q- n-C6F14, 
n-Cyril6 + n-CvF18, c-CHaC6Hll + c-CFaC6Fll. The CSPs of these sys- 
tems have been predicted already by Abe and Flory 1, but  no other 
points of the phase diagram have been calculated. The influence of the 
results of Flory's  free volume model on the theoretical form of the 
binodial is discussed. 

2. Formulation of Phase Equilibrium Conditions 

The condition for a system to be in thermodynamic equilibrium at 
constant temperature and pressure, requires its Gibbs energy to be a 
minimum. If  the system consists of two components and two coexisting 
liquid phases, it follows from this condition that  the chemical potential 
y.~ for any component i is equal in both liquid phases symbolized by (') 
and (') 

~ i ' = ~ ( '  ( i =  1,2). (1) 

In addition to this general prerequisite, some special assumption on the 
dependence of ~i on concentration and temperature is necessary. 

For the sake of algebraic simplicity, we shall use, as proposed by 
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Wohl 2, w h a t  m a y  be t e r m e d  '~generalized vo lume  f r ac t ions"  4~ def ined 
a s  

X I X 2 B 
~1 - -  42 - -  , ( 2 )  

x l + x 2 B  x l + x 2 B  

where  x,i are  the  mole  f rac t ions .  
I n  the  p a r t i c u l a r  case of a m i x t u r e  of a so lven t  and  a monod i spe r se  

po lymer ,  i.e. a p o l y m e r  cons is t ing  of only  one k ind  of species,  where  the  
p o l y m e r  is cons idered  as bu i l t  up  of segments  w h i c h  are  of the  same 
vo lume  as a so lven t  molecule ,  one m a y  set  ~1 equa l  to the  vo lume  
f rae t ion  of the  so lven t  and  B to t he  n u m b e r  of segments  in the  p o l y m e r  
species. T a k i n g  segments  i n s t ead  of molecules  as bas ic  uni t s  in the  
solut ion,  we m a y  then  wr i te  the  Gibbs ene rgy  in t e rms  of the  new 
concen t r a t i on  va r i ab le s  in ana logy  to the  Porter express ion  

AG _ A 41 42 _F j?T (~i in ~1 + ~]n 421, 
z'l + x2 B 

(3) 

where A G = AGE-} - A G id and  A G i~ is the  excess of the  mola r  Gibbs 

energy  of an ideal  m i x t u r e  over  the  c o n t r i b u t i o n  of the  pu re  compo-  
nents ,  R is the  mola r  gas c o n s t a n t  and  T the  t h e r m o d y n a m i c  t e m p e r a -  

ture .  F o r  B = 1 eq. (3) reduces  to A G = A x  1 x2 + A G ~ct. 
R e w r i t i n g  eq. (3) in the  form 

A G = A ~1 42 (xl + xe B)  + R T  (Xl in 41 + x2 In 42), (4) 

w e  note  t h a t  A G  m a y  be r ep re sen ted  as a sum of a t e rm  A G  R of 
Scatchard-Hildebrand t y p e  (following Flory,  we call  i t  the  " r e s i d u a l "  
t e rm)  and  of a Flory-Huggins  (FH)  c o m b i n a t o r i a l  p a r t  A Gc: 

:X a R = A % 42 (xl + x2 B)  - 
A B x l  x2 

xl  + x2 B 

A Gc = R T  (xl In ~1 + x2 In 42). 
(5) 

As shown in s t a n d a r d  t ex t s ,  the  co r re spond ing  chemica l  po t en t i a l s  A l~i 
m a y  be de r ived  f rom eq. (4) 

~2 Atx~ = A ~  2 + R T  [ln41 + ~2(B 1)/B] 

A ~2 = A B  4~ + R T  [In ~2 + 41 (1 --B)]. 
(6) 
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From eqs. (6) and (11) one obtains at the critical solution point, 
rium 

A~4~ ~ + RT [In (~ + 4~(~--~)] = A e ~ ]  ~ + R T  [ln 4~ + ('~(~--~)]. 
(Tb) 

Setting 

4] -[- 41 = 241 
(s) 

where 4~ denotes the mean composition of the two conjugate phases, 
combination of, eq. (8!, with eqs.(7a) and (7b), respectively, under 
elimination of 4~ and 42 yields 

RT = - , (9a) 

R T  = - , . (9b) 
2 (B--  1) (r 7,1) -~- In [(I Jr- 41--2~.1)/(1 --4'1) ] 

Combining eqs. (9a) and (9b) and expressing 7,t and 41 by 8e and 4s, we 
obtain after some algebraic rearrangement the following implicit 

relation between 4s and ~s 

2(B--I) (~2--~) + B(I 7,2)1~ 1 - - ( 2 ~ 2 - - 4 ; )  2 4 s - - 4 ;  
, + 7, 2 in - -  

i --42 ~.; 
- 0 .  

(10) 

Assuming that  the F H  term does not contribute to the enthalpy of 
mixing A H  E, tha t  is, if we take the parameter  B as independent of 

temperature;  we must, according to eq. (10), allow for 4~ being a 
function of 7,s in order to satisfy the equilibrium conditions. Extending 
eq. (3) to binary systems which do not strictly correspond to the 
molecular theoretical basis of the F H  equation, we replaced the volume 
fractions by the generalized concentration variables 4i. This seems 
legitimate in the absence of any specific interactions in the solution. 
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3. C a l c u l a t i o n  o f  the  B i n o d i a l  

The conditions tbr critical mixing are usually derived fi'om stability 
considerations implying that  at the point at which the two coexisting 
phases become identical, there should be simultaneously for any 
component : 

- -  = 0 and = 0. (11) 
\ 8z~ i%,p  \ 8xi  ~ /T~,r 

From eqs. (6) and (11) one obtains at the critical solution point 

B 1/2 1 

1 + B1/2 1 + B 1/2 

Using eq. (2), we may express the critical composition in mole fractions 

B 3/2 1 
xlc 1 + B3/2 X2c 1 + B 3/2 " (13) 

The value of the parameter  A at the critical temperature,  Ac, follows 
from eq. (6), (11) and (12) 

RTc RTc  (1 + B 1/2)2 
Ac - -- (14) 

2 ~2 2B  

and the residual Gibb~ energy A G~ at the critical temperature T c results 
from eqs. (5), (13) and (14): 

~G~ = RTcB1/2 (1 + B 1/2) (15) 
2 (1 + B3/2) 

I t  is appropriate to note here tha t  in applying simple classical 
thermodynamics to a critical point, we made implicitly a somewhat 
questionable assumption postulating the chemical potential to be a 
continous function through stable and unstable phases. This can be 
avoided ffwe derive eq. (12) and (14) on extrapolating eq. (9a) or (9b) to 
the critical temperature  instead of differentiating A ~i in the unstable 
portion of the curve that  has no physical significance, since mixtures in 
this range of compositions are not observable. 

Looking for the linfiting values of %~ and A as T approaches Tc, we 
introduce the approximation ln(1 +S)_~S in eq.(9a, b). Now, for 
instance, eq. (9a) becomes 

RTc ~2c (1 --~2c) 

2 Ae B (1 ~2c) + ~2c B" 
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As there is only one critical composition at a certain CSP, this quadratic 
equation should yield a pair of identical roots for {20, a requirement tha t  
cannot be satisfied unless A c is in agreement with eq. (14). The result for 
~2c is the same as given by eq. (12). 

In  order to perform the calculation of the binodial, we first neglect 
the tempera ture  dependence of A in eq. (9a, b) setting A = A c. The 
corresponding (uncorrected) equilibrium tempera ture  may be denoted 
by T 0. At any  tempera ture  sufficiently close to the critical, we may 
modify our crude approximat ion by a linear variat ion of A with T : 

A = A c +  A T  A T = T  T c. (16) 
P 

We now insert into eq. (9a) or (9b) the correction te rm of eq. (16), 
(t? A/t? T)p A T, giving T / A  (t? A/O T)p A T. The corrected tempera ture  T 
is then : 

or equivalently 

T [t?A] 

A T - 1 \t? in T i p '  

where A T O = T o -  T c. 
Relating the tempera ture  dependence of A 

determined quantities, we derive from eq. (5) 

~ s R  _ a H ~ - A  o R A G~(t? In A ]  
T - ; \ ~ - - ) /  

A S R being the residual entropy. From eq. (18) it fbllows tha t  

T ( O l n A  "~ A H  E 
1 

< ~ ~ ]~ ~ 6  ~ 

Thus, eq. (17) reduces to 

(17) 

to experimental ly 

(18) 

(19) 

(2o) 

Eq. (20) provides a simple means to predict the critical solution lint'. 
from the position of the CSP, characterized by a2c and Te, and the 
enthalpy of mixing. A G R is determined by A c and B which are functions 
of Z2c and To. 
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Carrying out the numerical eomputations~ one obtains the para- 
meter  B from X2c using eq. (13) and A c is related to B and T c by eq. (14). 

For any  value of ~,'2 the appropr ia te  paramete r  ~2 is found by a trial and 

error solution of eq. (10). With the data. Ac, ~'.2 and ~2 one may  evaluate 
A T o from either of the eqs. (9a, b); the tempera ture  T then follows from 

eq. (20). In most cases it would be sufficient to approximate  ~2 by ~2c 
and to determine the resulting error at  one singh~ point of the phase 
diagram. Corrections for temperatures  between this point and f c may  
then be est imated with sufficient accuracy from a linear interpolation. 

4. Results 

All of the four binary mixtures considered here exhibit  an upper 
CSP. Due to the scarcity of experimental  data. it is not easy to give some 
general answer to the question of how far the investigated solutions 
satis~- the assumptions on which eq. (6) is based. 

We first deal with the system n-C6H14 + ?~-C6F14 where an objective 
comparison of observed and calculated results is least difficult. Wil- 
liamson and Scott3 bave measured enthalpies of mixing at  a tempera-  
ture as close as 2 ~ above the CSP. I f  in eq. (5) the parameter  A is 
assumed as independent of concentration, then, according to eq. (19), 
the same will be true for A HE/A G j~. Hence, the variat ion of A with 
tempera ture  is readily obtained from the ratio A HE/A G R at a mo~e 
fraction of 0.5, AG R being evaluated from critical miscibility data.  
Fig. 1 presents the phase diagram of this system. Curves were calcu- 
lated with A H E supplied by the Flory theory as well as fl'om calorimet- 
ric measurements  and were fitted to the CSP. Moreover, the form of the 
theoretical curve is shown when A is kept  constant  everywhere 
(A = Ac). Best results are obtained if A H E from experimental  deter- 
minations is used, al though in the medium section of the predicted 
curve a major  discrepancy can be observed, whereas towards the ends 
disagreement with measured points becomes less. With A H  E taken 
from the Fiery theory, eq. (20) yields predictions of worse quality, 
which are, however, still bet ter  than  those resulting from the crude 
approximat ion A = A c. 

For  the system c-CH3CaH n + c-CF3C6Fll only A H E data  of minor 
accuracy reported by  Dyke 4 et al. were available. The authors have 
derived A H E from the tempera ture  dependence of A G ~ and added two 
calorimetrically determined points. Finally, the enthalpies of mixing 
refer to 65 ~ a tempera ture  tha t  is about  20 ~ above tha t  of the CSP. 
Nevertheless, the resulting phase boundary  curve (Fig} 2) is closer to 
the experimental  points than  tha t  obtained from A H  calculated on 
the basis of the Flor theory. 
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Fig. 1. Liquid-liquid phase separation in the system n-hexane + perfluoro-n- 
hexane. Experimental results 6 (solid curve)' theoretical results (dotted curves) 

�9 E ' E calculated with: 1 A H from Flory theory; 2 A = Ac; 3 A H from measure 
ments 
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Fig. 2. Liquid-liquid phase separation in the system methylcyelohexane + 
perfluoromethylcyclohexane. Experimental results 4 (solid curve); theoretieaI 
results (dotted curves) calculated with: 1 A H  E from Flory theory: 2 

E �9 A = A c; 3 A H from measurements 
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Fig. 3. Liquid-liquid phase separat ion in the system methane + earbont, etra- 
fluoride. Exper imenta l  result, s 5 (solid curve) ; theoretical results (dotted curves) 

calculated wit, h: 1 A H ~ from Flory theory;  2 A = Ac 
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Fig. 4. Liquid-l iquid phase separat ion in the system n-heptane + perfluoro n 
heptane. Exper imenta l  results 7 (solid curve) : theoretical  results (dotted curves) 

�9 E �9 calculated wlt, h : 1 A H ~ from Flory theory ; 2 A = Ae 
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In default of experimental A H ~ data, mutual solubilities of 
CI-I 4 + CF 4 and n-C7H16 + n-C7F16 (Fig. 3 and 4) were calculated with 
A H E estimated h'om the Flory theory and with A = A c. 

In Table 1, critical solution properties of the individual systems and 
values of ~2c, Ac and B calculated therefrom on the basis of 
eqs. (12) (14), are recorded. Excess Gibbs energies obtained from A c and 
B are, where adequate information was available, compared with 
experimental results at the composition midpoint. Enthalpies of mixing 
are listed in the paper of Abe and FloryL 

Table 1. Data qf studied binary systems. Upper critical solution temperature t c 
(in ~ critical compositions X2c and ~2c of the perfluorinated components, 
parameters Ac (in J/mol) and B, predicted and observed excess Gibbs energies 

A GE5 (in J/tool) for equimolar mixtures 

System tc X2c ~2c Ac B A ~E ~0 .5  
ealc. obs. 

CH 4 + CF45 179 0.43 0.477 1433 1.207 388 - -  

n_C6H14 + n_C6F143,6 23 0.37 0.456 4151 1.426 1181 1360 

n-CTH16 + n-CTF16%s 50 0.356 a 0.451 4451 1.485 1278 1310 

c_CH3C6H n + c_CF3C6Fll 4 46 0.40 a 0,466 4652 1.310 1295 - -  

Data from Abe and Flory 1. 

5. Discussion 

Eq. (4) is equal to the extended form of the F H  equation as used in 
the t reatment  of nonathermal polymer solutions. As to the temperature 

dependence of A G it is worth noting that  in the original concept of 
Flory ~ A G R, defined in eq. (5), was identified with A H E and considered 
as a relatively small term correcting the predominant combinatorial 

part  in AG-for deviations of the solution from athermal behavior. A G P 
is connected with A G c through the parameter B, whilst A is of no 

influence on the combinatorial contribution to A G. Also the critical 
compositions are due to eq. (12) and (13) completely determined by the 
parameter B, whereas Tc, as indicated in eq. (14), is a function of A as 
well as of B. 

For mixtures of molecules not largely differing in size, eq. (4) is in 
many eases still a quite useful approximation. With the aid of eq. (15) it 
may be shown that  the greatest possible value of A G R at the CSP, RTc/2,  
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is obtained at, B = 1. The assumptions of" the model impose on the 
pa ramete r  B the condition tha t  B > 1, and, as a consequence, eq. (13) 
requires to select as component  2 tha t  one which has a critical 
composition x~c < 0.5. 

From eq. (15) it follows tha t  at the consolute point (and also in some 
interval above and below the critical solution temperature)  A g R > 0. 
This a rgument  would lead to the conclusion tha t  the CSP of a system 
where A is independent of T (A = Ac) should always be an upper CSP, 
provided the following considerations formulated by  Rehage m hold�9 

I f  we accept tha t  a Taylor series expansion of A G is valid near the 
critical point  (see comment  in Section 3), then we may apply the 
necessary conditions10 for the existence of a C S P  

where 

3 A HE~ 

o x--~7)~,~o ~: o, 

( 3 2 A HE~ 
< 0  

and 

( o2 A H~) 

From eq. (5) we obtain 

Thus 

where 

at  the upper  CSP 

at  the lower CSP. 

(;In yR / ' , 
\ (~ Xl / P  T Xl X2 Xl -~- X2 B X 1 

o r  =A(~ B~). 

3 e A Gi~) 

ax~ /P,r 

X2 

k3 x l /p ,  r' 

(21) 

\gxl/p,m xlx2 
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Therefore we may  write 

5x2 ] P , T -  2AGI~(xl x2)2" (22) 

Assuming A = A c for any tempera ture  along the critical solution 
line, we conclude from eq. (18) tha t  in this part icular  ease A H E = A G R, 
where A G R > 0 at the CSP as shown earlier. Considering now eq. (22), 
we get ((?2 A HE/(? x~)p, T~ < 0, a necessary condition for the occurrence of 
an upper  CSP according to eq. (21). 

I t  is now possible to test  some predictions ofeq. (20) on the behavior 
of the thermodynamic  excess functions at  the eonsolute point. 

Due to eq. (20), the CSP of a binary system should be an upper  CSP, 
if the sign of A T and A T o is the same, in other words, if A H E > 0 at  the 
CSP. 

As obvious from eq. (19) and (22), 

(C22AHE~ = 2A G~(~1~2~ [ c  l ~ !  1 - - T  (C21nA~ ~ = _ _ 2 A H E ( ~ I  " 
\ ~x~ /P ,% - 1  2J~ \ ~ T  / p J  \ x  l x~& 

Therefore (C22 A HE/C2x~)p,T~ can only be negative, if, in agreement 

with eq. (20), at the CSP A H E > 0. 
Using eq. (21), one may  similarly verify the following assertion 

based on eq.(20): I f  the binary system exhibits a lower CSP, then 
A H E < 0 there and on account of A G R > 0, A S R < 0, too. 

Another consequence of eq. (20) is tha t  A H E ~= 0 at  the CSP. This 
s ta tement  is again confirmed by eq. (21). 

The basic features of the model underlying eq. (4) may  be sum- 
marized as follows: 

(1) The parameters  A and B are considered as independent of 
concentration, B also of temperature.  

(2) At fixed T and P, the proportion of A G R, A H E and T A SR remains 
on account of eq. (18) and (19) constant  over the whole range of 
compositions. 

(3) Since eq. (22) implies A G R to be a function free from points of 
inflection, one may  establish as a general rule valid at any concen- 
t ra t ion in a tempera ture  interval around the eonsolute point tha t  

(a) AG R > 0 a n d A H  E~-O. 
(b) In the vicinity of an upper  CSP AG l~ > 0 and A H  f > O. 
(e) In  the vicinity of a lower CSP A G ~ > 0, A H E < 0, A S ~ < 0. 
The s ta tements  made in point (3) (a) (c) are in agreement with 

experience. Other consequences of the basic equations such as A G R and 
especially A H E and A S R should be functions without any points of 



On the Thermodynamics 271 

inflection are of less rigorous validi ty even in the close vicinity of the 
CSP thus indicating the limitations of the t rea tment .  This short- 
comings cannot be removed by the free volume theory of Flory  unless 
additional assumptions are made, since the reduced equation of state in 
the free volume concept in its original form does solely correlate various 
thermodynamic  properties at the same concentration without supply- 
ing any information on their functional dependence on composition. 
For  tha t  reason it is not unusual in the t r ea tment  of polymer mixtures 

to combine eq. (4) representing A G for any composition with the free 
volume theory predicting its dependence on tempera ture lL  I t  is 
difficult to give a more detailed description of consolute behavior by a 
refined t r ea tment  without  thereby introducing a major  number  of 
adjustable parameters .  
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